

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Fluorescence Enhancement of Eu³ in POCl₃:SnCl₄ and of Sm³ in POCl₃:ZrCl₄

J. Chryschooos^a; P. Tokousbalides^a

^a Department of Chemistry, University of Toledo, Toledo, Ohio

To cite this Article Chryschooos, J. and Tokousbalides, P.(1973) 'Fluorescence Enhancement of Eu³ in POCl₃:SnCl₄ and of Sm³ in POCl₃:ZrCl₄', *Spectroscopy Letters*, 6: 7, 435 — 445

To link to this Article: DOI: 10.1080/00387017308065481

URL: <http://dx.doi.org/10.1080/00387017308065481>

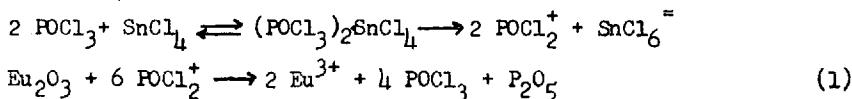
PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

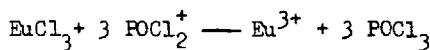
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

FLUORESCENCE ENHANCEMENT OF Eu^{3+} IN $\text{POCl}_3:\text{SnCl}_4$ AND OF Sm^{3+} IN $\text{POCl}_3:\text{ZrCl}_4$.


by

J. Chrysochoos and P. Tokousbalides
Department of Chemistry, University of Toledo
Toledo, Ohio 43606


The fluorescence efficiency of the rare-earth ions in organic solvents depends strongly upon the solvent molecules in the primary solvation sphere and to a lesser extent upon the molecules located in the secondary solvation sphere of the ion⁽¹⁻⁴⁾. The fluorescence efficiency of the rare-earth ions in many organic solvents is relatively low probably due to an efficient electronic excitation energy transfer from the lowest excited state of the rare-earth ion to the organic solvent, via some high overtones of certain vibrational modes associated with the solvent under consideration. Contrary to this behavior, solutions of the rare-earth ions in solvents associated with very low-energy vibrational modes, "aprotic" solvents, like $\text{POCl}_3:\text{SnCl}_4$, $\text{POCl}_3:\text{ZrCl}_4$, $\text{POCl}_3:\text{SbCl}_5$ etc., exhibit a remarkable enhancement in both the fluorescence efficiencies and lifetimes of the rare-earth ions⁽⁵⁾. Neither the organic nor the "aprotic" solvents used absorb light in the excitation region i.e., 370 μm to 410 μm . Since the absorption spectra of these solvents appear at wavelengths shorter than 300 μm one may rule out both energy transfer from the solvent to the rare-earth ion and decreased light absorption by the ion due to the presence of the solvent. The "aprotic" solvents do not have groups containing H-atoms, i.e. $\longrightarrow \text{C-H}$, -O-H , >N-H etc., which are associated with high energy

vibrational modes. The importance of such "aprotic" solvents is not associated only with a mere fluorescence enhancement. Both the fluorescence efficiencies and lifetimes depend upon the composition of these solvents⁽⁵⁾.

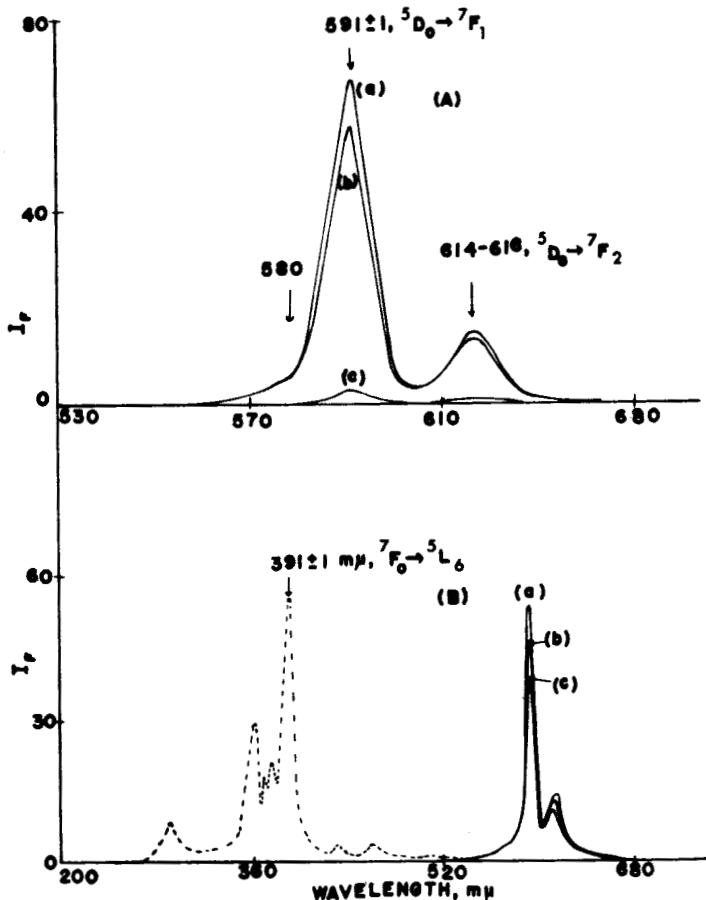
Europium oxide (99.9 to 99.99% purity) was dissolved in a mixture of POCl_3 and SnCl_4 , under refluxing conditions at 80-90°C, in the absence of water vapor and CO_2 . Transparent solutions containing up to $3 \times 10^{-1}\text{M}$ Eu^{3+} were prepared. The solubility of Eu_2O_3 was found to decrease at lower $[\text{SnCl}_4]$, whereas at higher $[\text{SnCl}_4]$ a precipitate, probably of the type $(\text{POCl}_3)_2 \cdot \text{SnCl}_4$, was formed, which was soluble in an excess of POCl_3 .

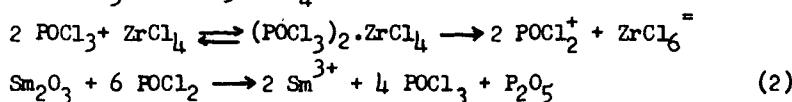
The role and the effect of P_2O_5 upon the fluorescence efficiency of Eu^{3+} is uncertain. One can eliminate this problem provided that anhydrous EuCl_3 is employed.

However, despite our continuous attempts to use either commercially labeled "anhydrous" EuCl_3 or anhydrous salts prepared via a stepwise removal of the water present, at low temperatures and low pressures, we have been unable to attain transparent solutions. It appears that in both cases some small amounts of oxychloride, EuOCl , were present in sufficient quantities to give rise to slightly cloudy solutions. Furthermore, Reaction (1) is not completely unambiguous. The solvation species could be either POCl_2^+ , the complex $(\text{POCl}_3)_2 \cdot \text{SnCl}_4$ or both. The main argument supporting the existence of Reaction (1) is that Eu_2O_3 is insoluble in both pure POCl_3 and pure SnCl_4 , which are associated with very low conductivities i.e. $1.6 \times 10^{-6} \Omega^{-1} \text{cm}^{-1}$ and $1 \times 10^{-8} \Omega^{-1} \text{cm}^{-1}$, respectively, whereas POCl_3 with 6% (in moles) of SnCl_4 has a conductivity of $6 \times 10^{-6} \Omega^{-1} \text{cm}^{-1}$ ⁽⁶⁾.

Eu^{3+} IN $\text{POCl}_3:\text{SnCl}_4$ AND Sm^{3+} IN $\text{POCl}_3:\text{ZrCl}_4$

The emission spectra of 2×10^{-1} M Eu^{3+} in $\text{POCl}_3:\text{SnCl}_4$ at a $[\text{POCl}_3]/[\text{SnCl}_4]$ ratio of 11.0 (optimum ratio) are shown in Figure (1A). Spectrum (a) was taken at about -2°C (freezing point of the sample), spectrum (b) was taken




Figure 1. Emission spectra of Eu^{3+} in $\text{POCl}_3:\text{SnCl}_4$; uncorrected.

(A) 2×10^{-1} M Eu^{3+} in $\text{POCl}_3:\text{SnCl}_4$ at $[\text{POCl}_3]/[\text{SnCl}_4] = 11.0$;

$\lambda_{\text{exc}} = 391 \pm 1 \text{ m}\mu$. (a) at about -2°C (b) at 25°C and (c) emission spectra of 2×10^{-1} M EuCl_3 in aqueous solutions (magnified by a factor of 10). (B) 5×10^{-2} M Eu^{3+} in $\text{POCl}_3:\text{SnCl}_4$ at various $[\text{POCl}_3]/[\text{SnCl}_4]$ ratios; $\lambda_{\text{exc}} = 391 \pm 1 \text{ m}\mu$. (a) $[\text{POCl}_3]/[\text{SnCl}_4] = 11.0$, (b) $[\text{POCl}_3]/[\text{SnCl}_4] = 11.5$ and (c) $[\text{POCl}_3]/[\text{SnCl}_4] = 19.1$ and 23.5.

at 25°C, whereas spectrum (c) represents the emission of 2×10^{-1} M EuCl_3 in aqueous solution (25°C) under identical conditions and magnified by a factor of 10. An enhancement of about 220 is apparent as far as the fluorescence efficiency of Eu^{3+} in $\text{POCl}_3:\text{SnCl}_4$ (at a molar ratio of 11.0) is concerned, relative to that in aqueous solutions, under identical conditions. An additional enhancement of about 17% is also observed by lowering the temperature from 25°C to -2°C. Lower temperatures could not be employed because the freezing point of the samples was about -2°C. Both enhancements are much lower than the corresponding fluorescence intensifications for Sm^{3+} in $\text{POCl}_3:\text{SnCl}_4$ (at a $[\text{POCl}_3]/[\text{SnCl}_4]$ ratio of 10.34⁽⁵⁾). Figure (1B) depicts the appropriate emission spectra of Eu^{3+} in $\text{POCl}_3:\text{SnCl}_4$ at various $[\text{POCl}_3]/[\text{SnCl}_4]$ ratios and at 25°C. The fluorescence efficiency of Eu^{3+} increases as the $[\text{POCl}_3]/[\text{SnCl}_4]$ ratio decreases. The $[\text{POCl}_3]/[\text{SnCl}_4]$ ratios vary from 11.0 to 23.5 (in moles), whereas the appropriate changes in the fluorescence efficiencies of Eu^{3+} are rather small, namely 30 to 40%. Since the transition probabilities were found to be almost the same for different $[\text{POCl}_3]/[\text{SnCl}_4]$ ratios⁽⁵⁾, the changes observed may be attributed to a weak fluorescence quenching by the $\xrightarrow{\quad} \text{P} = \text{O}$ group of the POCl_3 molecules which predominate at high $[\text{POCl}_3]/[\text{SnCl}_4]$ ratios. This speculation is based on the fact that the fundamental frequency of the stretching vibrational mode of the $\xrightarrow{\quad} \text{P} = \text{O}$ group is about 1300 cm^{-1} (7,8) and therefore, it should not be completely ignored.

Figure (2A) exhibits similar emission spectra of Sm^{3+} in $\text{POCl}_3:\text{ZrCl}_4$, where ZrCl_4 is a Lewis acid replacing SnCl_4 . Samarium oxide (99.9-99.99% purity) is dissolved by $\text{POCl}_3:\text{ZrCl}_4$ using the same conditions as those used for EuCl_3 in $\text{POCl}_3:\text{SnCl}_4$, namely

Eu^{3+} IN $\text{POCl}_3:\text{SnCl}_4$ AND Sm^{3+} IN $\text{POCl}_3:\text{ZrCl}_4$

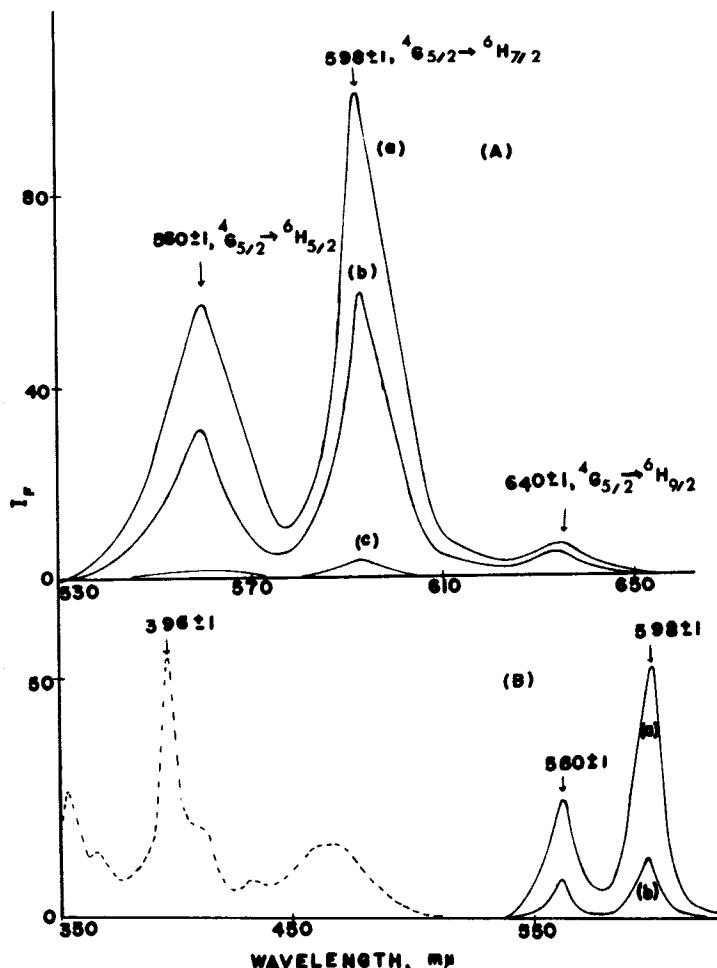


Figure 2. Emission spectra of Sm^{3+} in $\text{POCl}_3:\text{ZrCl}_4$. (A) $2 \times 10^{-1} \text{ M } \text{Sm}^{3+}$ in $\text{POCl}_3:\text{ZrCl}_4$ at $[\text{POCl}_3] / [\text{ZrCl}_4] = 30$; $\lambda_{\text{exc}} = 396 \pm 1 \text{ m}\mu$. (a) at about 0°C , (b) at 25°C and (c) emission spectra of $2 \times 10^{-1} \text{ M } \text{SmCl}_3$ in aqueous solution (magnified by a factor of 10). (B) Emission spectra of $4 \times 10^{-2} \text{ M } \text{Sm}^{3+}$ (a) in $\text{POCl}_3:\text{SnCl}_4$ at $[\text{POCl}_3] / [\text{SnCl}_4] = 28$ and (b) in $\text{POCl}_3:\text{ZrCl}_4$ at $[\text{POCl}_3] / [\text{ZrCl}_4] = 30$; $\lambda_{\text{exc}} = 396 \pm 1 \text{ m}\mu$; uncorrected. Spectrum in dashed lines represents the fluorescence excitation spectrum (uncorrected).

Spectrum (a) shows the emission of 2×10^{-1} M Sm^{3+} at about 0°C (freezing point of the sample), spectrum (b) exhibits the emission of Sm^{3+} at 25°C whereas (c) represents the emission spectrum of 2×10^{-1} M SmCl_3 in aqueous solutions, magnified by a factor of 10, under identical conditions. An enhancement of about 300 is apparent in the fluorescence intensity of Sm^{3+} in $\text{POCl}_3:\text{ZrCl}_4$ relative to that in aqueous solutions, whereas an enlargement of about 70% was observed by lowering the temperature from 25°C to 0°C . The emission spectra exhibit only three bands associated with the transitions $^4G_{5/2} \rightarrow ^6H_{5/2}$, $^4G_{5/2} \rightarrow ^6H_{7/2}$ and $^4G_{5/2} \rightarrow ^6H_{9/2}$, respectively. The additional bands are not shown because they appear at wavelengths longer than $650 \text{ m}\mu$, a region in which our 1P21 phototube has practically zero response. The fluorescence enhancement of Sm^{3+} in $\text{POCl}_3:\text{ZrCl}_4$ is smaller than the corresponding enhancement observed for Sm^{3+} in $\text{POCl}_3:\text{SnCl}_4$ under identical conditions (Figure (2B)).

The changes observed in the fluorescence efficiencies of the rare-earth ions in "aprotic" solvents relative to those in aqueous solutions are not matched with appropriate changes in the absorption spectra. Figure (3) shows a comparison between the ultraviolet and the visible spectra of SmCl_3 in H_2O and in $\text{POCl}_3:\text{ZrCl}_4$ at $[\text{POCl}_3]/[\text{ZrCl}_4] = 30$.

These absorption spectra are expressed in terms of their molar extinction coefficient, ϵ . Intensity-wise there is a very minor (almost negligible) increase in the value of ϵ for Sm^{3+} in $\text{POCl}_3:\text{ZrCl}_4$. On the other hand, a considerable splitting is observed in the case of Sm^{3+} in $\text{POCl}_3:\text{ZrCl}_4$ whose origin is not clear at the present time. A similar but better defined splitting was observed in the case of Sm^{3+} in $\text{POCl}_3:\text{SnCl}_4$ (5). Figure (4) shows the complete absorption spectra of

Eu^{3+} IN $\text{POCl}_3:\text{SnCl}_4$ AND Sm^{3+} IN $\text{POCl}_3:\text{ZrCl}_4$

Sm^{3+} in $\text{POCl}_3:\text{ZrCl}_4$ at $[\text{POCl}_3] / [\text{ZrCl}_4] = 30$. Figure (4A) shows the spectrum at 0°C , whereas Figure (4B) depicts the spectrum of Sm^{3+} at 25°C .

If we examine the last four absorption bands of Figure (4), namely the bands which are associated with the transitions $6\text{H}_{5/2} \rightarrow 6\text{F}_{7/2}$, $6\text{H}_{5/2} \rightarrow 6\text{F}_{5/2}$, $6\text{H}_{5/2} \rightarrow 6\text{F}_{3/2}$ and $6\text{H}_{5/2} \rightarrow 6\text{F}_{1/2}$, respectively, we can

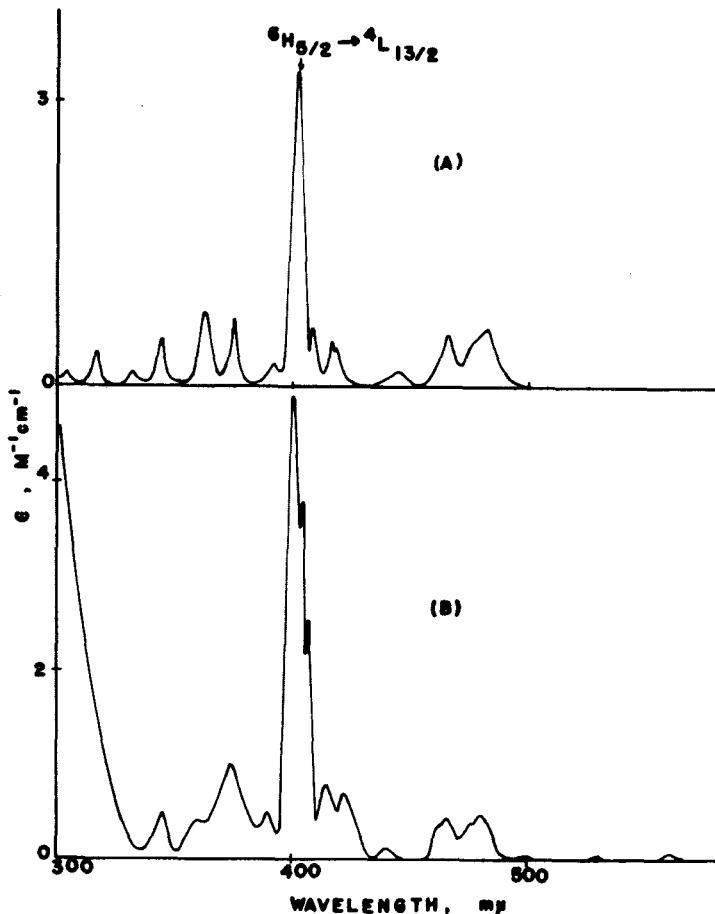
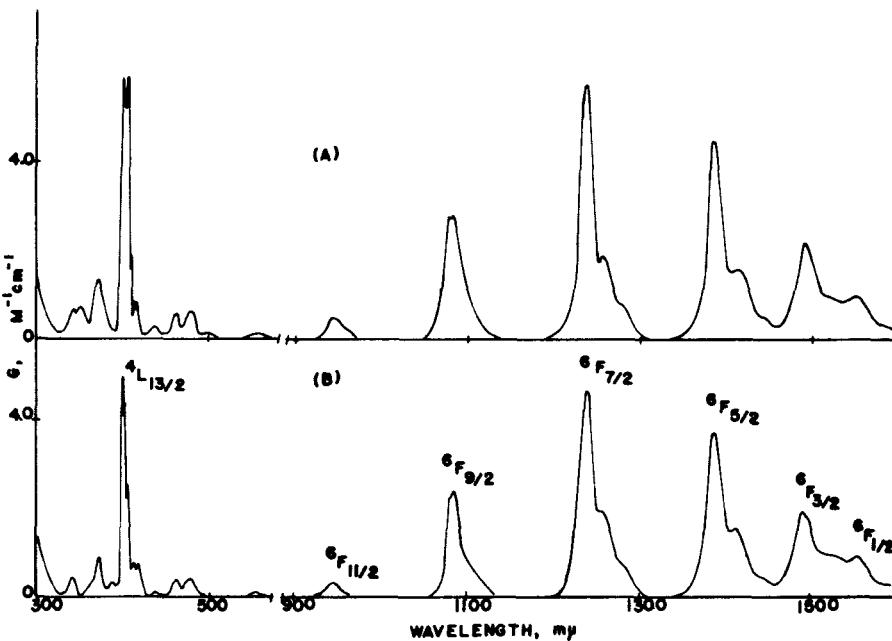



Figure 3. (A) Absorption spectrum (ultraviolet and visible) of Sm^{3+} in aqueous solutions (in terms of ϵ) (B) Absorption spectrum (ultraviolet and visible) of Sm^{3+} in $\text{POCl}_3:\text{ZrCl}_4$ at $[\text{POCl}_3] / [\text{ZrCl}_4] = 30.0$ in terms of ϵ . Room temperature.

observe that all these bands (which correspond to single transitions) exhibit the same pattern i.e. the main peak accompanied by a weak side band, red-shifted by about 150 cm^{-1} and a much weaker shoulder, red-shifted by about 290 cm^{-1} . If we plot these four bands on a $\Delta\bar{v}$ scale in such a way that the four main peaks are superimposed ($\Delta\bar{v}=0$), the other two components of the bands under consideration are also almost superimposed at $\Delta\bar{v} = -150 \text{ cm}^{-1}$ and $\Delta\bar{v} = -290 \text{ cm}^{-1}$, respectively, (Figure (5)). The minus sign indicates a red shift, whereas the positive sign implies a blue shift.

Figure 4. (A) Absorption spectrum of Sm^{3+} in $\text{POCl}_3:\text{ZrCl}_4$ at $[\text{POCl}_3]/[\text{ZrCl}_4] = 30$ and at 0°C . (B) Absorption spectrum of Sm^{3+} in $\text{POCl}_3:\text{ZrCl}_4$ at $[\text{POCl}_3]/[\text{ZrCl}_4] = 30$ and at 25°C . Both spectra are given in terms of ϵ vs the wavelength.

Eu^{3+} IN $\text{POCl}_3:\text{SnCl}_4$ AND Sm^{3+} IN $\text{POCl}_3:\text{ZrCl}_4$

These results may indicate a possible quasimolecular nature for Sm^{3+} in $\text{POCl}_3:\text{ZrCl}_4$, in which the ion is weakly bonded, or pseudobonded, to the solvent. Such a bond or pseudobond will be very weak and the two side bands may represent the fundamental and the first overtone of this bond, respectively, (vibronic structure). Another alternative could be the participation of the $^6\text{H}_{7/2}$ and $^6\text{H}_{9/2}$ states of Sm^{3+} as initial states. However, the state $^6\text{H}_{7/2}$ lies about 1000 cm^{-1} above the ground state of Sm^{3+} , $^6\text{H}_{5/2}$ ⁽⁹⁾. Therefore, unless one may postulate a strong

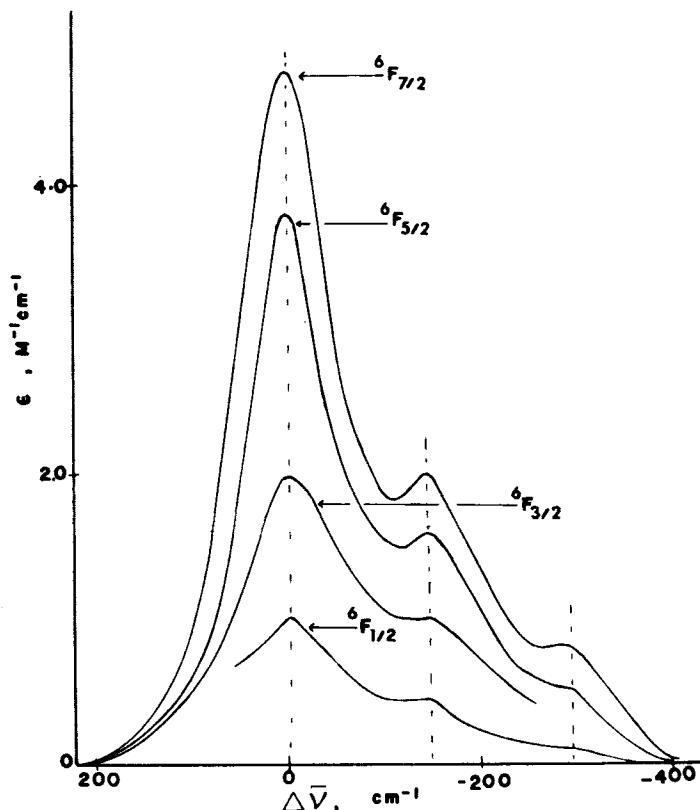


Figure 5. Absorption bands associated with transitions from the $^6\text{H}_{5/2}$ state of Sm^{3+} to the $^6\text{F}_{7/2}$, $^6\text{F}_{5/2}$, $^6\text{F}_{3/2}$ and $^6\text{F}_{1/2}$, respectively, in $\text{POCl}_3:\text{ZrCl}_4$ at $[\text{POCl}_3]/[\text{ZrCl}_4] = 30$, plotted on a differential wave-number scale, $\Delta \bar{v}$; room temperature.

Stark splitting of the $^6H_{7/2}$ in which some low energy components appear above the ground state by about 150 and 290 cm^{-1} , the role of the $^6H_{7/2}$ and $^6H_{9/2}$ should be ruled out at room temperature. On the other hand, Stark splitting of the $^6H_{5/2}$ may also give rise to such two side bands. The answer to this problem is not available at the present time. These side bands have not been observed so far by Raman spectroscopy. However, their detection may be very difficult due to their weakness and low energies. Studies using far infrared are also under way. Similar vibronic structure was not observed in the case of Eu^{3+} in $\text{POCl}_3:\text{SnCl}_4$, although it was observed for Sm^{3+} in $\text{POCl}_3:\text{SnCl}_4$ associated with slightly different red shifts. The reason for the absence of such a structure for Eu^{3+} in $\text{POCl}_3:\text{SnCl}_4$ may be that the low energy of such bands make it almost absolutely necessary to search for them in the near or regular infrared. Whereas Sm^{3+} has a number of fairly narrow absorption bands in this region, Eu^{3+} is associated with two very broad absorption bands ranging from 1.7μ to 2.4μ . Any weak vibronic bands could be lost under these strong and very broad bands.

ACKNOWLEDGMENT

This project was supported by a grant from Owens-Illinois (Corporate Research Laboratories) for which we are grateful.

REFERENCES

1. J. Chrysochoos, *Chem.Phys.Letts.*, 14, 270 (1972).
2. J. Chrysochoos, *Spectry.Letts.*, 5, 57 (1972).
3. J. Chrysochoos, *Ibid.*, 5, 429 (1972).
4. J. Chrysochoos and A. Evers, *Chem.Phys.Letts.*, 18, 115 (1973).

Eu^{3+} IN $\text{POCl}_3:\text{SnCl}_4$ AND Sm^{3+} IN $\text{POCl}_3:\text{ZrCl}_4$

5. P. Tokousbalides and J. Chrysochoos, *J.Phys.Chem.*, 76, 3397 (1972).
6. F. Collier, H. Dubost, R. Kohlmüller and G. Rault, *C.R. Acad.Sci.Ser.C* 267, 1065 (1968).
7. M.E. Peack and T.C. Waddington, *J.Chem.Soc.*, 3450 (1962).
8. K. Nakamoto "Infrared Spectra of Inorganic and Coordination Compounds" John Wiley and Son, New York, N.Y., (1963) p. 112.
9. G.H. Dieke and H.M. Grosswhite, *Appl.Opt.*, 1, 675 (1963).

Received April 17, 1973

Accepted May 18, 1973